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Abstract
Kcyworcls: Adaptive control, aititude  control, spat.c station, ]nobile  payload

‘1’hc attitude control problem of earth orbiting platforms is considered. A model rcfercncc

adaptive control law has been dcvclopcd that stably maintains spacecraft attitude at the

torque equilibrium under the influcncc of large mass variations and external disturbances,

‘J’he result is demonstrated through simulation using the nonlinear dynamic model of the

Space Station Freedom.

1 Introduction

Future space missions envision the usc of large earth orbiting platforms such as the space

station, various space telcscopcs,  intcrfcromctcrs,  and planet ary explorat  ion spacecraft. Con-

sidering that vehicles of large size must bc assembled in space, knowledge of their mass and

dynamic properties will involve significant uncertaintjcs. This results from the fact that

ground structural tests can only be pcrformccl  on the isolated component and subsystcm

ICVCIS,  and in the l-g environment. Consequently, onc should anticipate that in-flight dy-

namic  behavior will deviate significantly from that prcdictcd  by analytical models. Systc]n

parameter uncertainties combined with the effect of on orbit  dynamic disturbances such as

scrod ynami c and gravitational forces, torques generated by astronaut motion in manned

vchic]es, and transportation of large mobile payloads, introduce significant complexity to

the attitude control and vibration  suppression problcm.  lJtilization  of conventional control

techniques will no longer bc adequate to ensure stability and meet performance rcquircmcnts.

1



. r,,

.

q’he adverse effect of environmental disturbances is particularly apparent in some of the pYo-

posecl space station configurations, where aerodynamic forces tend to clcstabilizc  the vehicle.

The attitude control and momentum management problem for this case }]as been addressed

iIl [1]- [2] under the assumption of WC1l known vchiclc  dynamics. Stability, however, cann-

ot bc guaranteed if lhcrc is insufflcicllt  k~lowlcdgc of mass properties, or substantial mass

variations, such as those induced by large payload motion.

l’or systems with significant model unccrtaintics,  one can address the control design problcm

in two ways: either  perform periodical on-orbit parameter identification followed by a. fixed

gain control design and tuning, or develop a direct  adaptive scheme that will continuously

adjust  cent roller gains to compensate for parameter un ccrt aintics and time-varying p] ant and

environmental effects to ensure stable and robust performance. ‘J’hc former method, that

inc]udcs indirect adaptive control, has been investigated in [3]- [4]. A potcntia]  disadvantage

of indirect methods is that they  require persistent excitation condition which may not bc

satisfied under nominal spacecraft motion. 1 n contrast, the present paper consi dcrs the design

of a direct adaptive controller. This schcmc is stable, does not require persistent cxcita,tion,

and provides the capability to handle sudden or continuous changes in systcrn dynamics,

such as those generated by payload motion, vchiclc  docking, changing configurate ion, and

parameter drift.

‘J’hc following sections present the derivation of the control law. In Section 2, the nonlinear

attitude dynamics of the orbiting spacecraft are discussed and a linearized representation,

useful in control design, is derived. In Section 3, model rcfcrencc adaptive control (M R,AC)

theory is used to first derive a non adaptive model following control law and then extend it

to an adaptive algorithm, A stability proof is givcll as all integral part of the derivation to

show robustness under the cflect of large moment of inertia changes and of dcst abi]izing aero-

dynamic forces. Section 4 gives an application of the algorithm to the ‘Phase I’ configuration]]

of the Space Station Freedom (SSF) shown in F’igure 1.
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2 Attitude Dynamics and Control

The control problcm  for space platforms such as the space station is conccrncd with both

attitude stabilization and suppression of flexible body vibrations. l’hcsc two proccsscs, how-

ever, occur at distinctly separated time-scalm or frequency bands, thus allowing dccoupli]lg

of the rigid body from the flexible dynamics. ‘J’l)c attitude control loop considered in ibis

paper constitutes an inner (slower) loop in the control systcm with an cffcctivc bandwidth

at least onc dccadc  below the frequency of the first flexible mode. 7’l]c resulting control sys-

tcm is adequate to hand]c  the cnvironmcnta]  disturbances that, typically, vary at the orbital

rate, ~’hc control law is generically dcvclopcd using the linearized attitude dynamics of a

rigid spacecraft. Performance evaluation is then conducted via simulation with the nonlinear

dynamic model of the SSF.

This paper deals with the attitude control problcm only, and assumes that the torque equilib-

rium ang]c  (TF.A) is known. A momentum management loop is currcntl  y under dcvclopmcnt

and will bc integrated with the attitude control law prcscntcd  here.

2.1 Assumptions and Definitions

q’hc following analysis assumes a rigid spacecraft on a circular orbit. ‘1’hc attitude control

systcm will enforce a local vertical-local horizontal (I,VI,II ) orientation of the vchiclc. ‘1’wo

coordin atc systems arc of interest at present. g’hc rotating orbital frame O(X, Y, Z) in the

I,VI,}] orientation with the +Z axis along the local  vertical in the nadir direction, the +X

in the direction of flight, and the +Y axis normal to the orbital plane defined by the vector

~ x ~. Then the orbital rate vector in 0 coordinates is

0=[0 ‘– W() 0]7 (2,1)

where W. is the orbital rate. A body fixed coordinate systcm I?(x, y, z) is defined to nominally
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coincide with 0. l’erturbation-s  of f? relative to 0 define  the spacc:craft  attitude expressed in

tams of the three attitude  angles OT, Ov, and 02, tllc roll, pitch and yaw, rcspectivc]y. ‘1’hc

body rate components about the B axes form tl]c vector

(2.2)

lJsing the above definitions and assuming a (2-3-1) rotation sequence of the B frame from its

original alignment with Cl, one obtains the equation for the attitude kincma,tics

[ov;wOl=[A’’[il (2.3)

[

Cos Oz – Cos or Cos 0. sin Or sin Oz
AB =-+ O Cos 02 — sin Or

1

(2.4)
2 0 sin Or cos 02 Cos or Cos 02

‘1’hc three attitude angles arc concatenated in the 3-tuplc

o == [ox Ov 0.]7’ (2.5)

Assuming that the 1? axes are also the principle axes of the structure, then the off-diagonal

terms in (2.6) vanish, To distinguish from the inertia tensor, the symbol Z will represent the

i dcntit  y matrix. Final] y, given any t hrec-vector  v = [v] 112 03] “, the notation O will bc used

to del)otc the cross product operator

(2.7)
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2.2 Rigid Spacecraft Dynamics

q’hc motion  of a rigid body is governed by the Euler equations

i] +-GII = 7’ (2!8)

whcm 11 is the angular momentum vector and 7’ is the total cxtcrna] torque. ASSUmiI]g that,

the control is cffcctcd by utilizing a momentum exchange dcvicc,  e.g. col)trol moment gyro

(ChlG), 11 takes  the form

11 = IW + h (2.9)

with

il ~ –M + u (2.10)

wl]cm /t is the angular momentum of the CNIG and u is the  control input. Upon substitution

of (2.9) and (2.10) into (2,8) yields

IL)+LJIL.J = –u +- 7’ (2.11)

2.3 Linearized Attitude Dynamics

For contro] design purposes, (2,11) may bc linearized by expanding to the first order about

the constant orbital vector 0 to obtain

[ 1
lb = –fun – &J (L4J-Q)-U+7’

LJJ==  Q
= wLd+G’~o-u+-T (2.12)

(2,13)

(2.14)
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and the quantities Go and Gl by

‘O=+?!’l; ‘]=3W’)[’3Z:2 ‘3:% ! (2.15)

The aerodynamic force 7: has the form

7; = q~ + q~ sin wot + q~ sin 2woi (2.16)

‘J’hc attitude kinematics may now bc uti]izcd to eliminate u from (2.1 2). Assuming small

angles (2.3) yields

O=ilo+u–fl and O==(loi-w

Then substituting into (2. I2) onc obtains the linearized description of the attitude dynamics,

With similar arguments, it can be shown that the CMG angular momentum may bc approx-

imately represented by the linear equation

A = –fill + u (2.18)

g’hc simplified form of (2.17) will bc used in Section 3 to derive the attitude control law.

3 Model Reference Attitude Control

‘1’he attitude dynamics can be written in the following second-order form,

Equation (3.1) follows from (2.17) with M = –X, ~’ = l’~d, 1’~ = [WO -t GO + qolqllqz],

D == –(lij +- W), K = Wfi – G 1, IIv = 1 and UP = ZL. ‘1’hc boulldcd disturbance Vector  d

acting  on the spacecraft can be considered solution of the differential equation

d =: Add (3.2)
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where all the cigenvalues of the matrix Ad arc distinct and lic on the jw axis. Accordingly

(SW l,cmma  A2), there is a Pd = I’;’ >0 such that,

]’d.& +- /’@’d = ‘~d = O (3!3)

It is convenient to put the attitude dynamics (3.1) into state-space form as follows,

[1 [
d= o
0 T IIWAJJP–A4-11{ –A4-llj

[1o+ A4-l~\~  d (3.4)

It is noted that this system has the following genera] form,

tip = Apzp + B,up + I’d (3.5)

Wllcrc,

2P =
[::]; Ap=[lpl  L]

(3.6)

%=[1:P2];  1=[:2] (3.7)

liy comparison with (3.4) the components of model (3.5) are spccificd  as, ZP1 = 0, XPZ =

d, API = – M- lA’ ,  APZ = –A4-l D, BPZ = M-llL, 1’2 = M-l] ’d. ]]cfinc a rcfcrcncc  model

of the form,

i., == Amz,,,  + &Um (3.8)

(3.9)

‘J’hc reference model can bc chosen by the designer to bc any stable model of the form

(3. S),(3.9). Ilcncc,  there exists Q = Q7 >0 and 1) = P7’ >0 such that

PA., + A:iI’ = –Q (3.10)
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3.1 Non-Adaptive Control

III this section, a rnodcd rcfcrcnce  attitude control law will h designed of the followi]]g forln,

up = A’”zv +- II”uw, + JOd (3.11)

where KO, 11°, and Jo are matrix gains which remain to bc chosen. l)cfine a state error vector

as,

c = X,)t – Xp (3.12)

‘J’hc dynamics of c can be computed as,

+(M), – Bpll”)u,n – (})pJ”  + J’)(i (3.13)

~’hc dynamics of c arc simplified by choosing the gains as to the following Model ltcjcrence

A tiiiude Control l,aw
K“ = [K; K;]
K; =  }$~ (A.,l –  API)
K; =  B;’ (A.,z – Apz)
11° =  B;; 13,,,~
J “  =  –I@’2

in which case the error equation (3.13) becomes,

(3.14)

t == Amc (3.15)

Clearly, using the attitude controller (3,1 1 ),(3.14) the error between xl, and x,~ dies out

exponentially according to the dynamics of the reference model An,.

Remark: 1{ knowledge of A4, K, l) is available, the model reference attitude control law

can bc used for gain scheduling. Since  these  quantities appear explicitly in the design, i.e.,

substituting expressions from the second-order model (3.1 ) gives K; = i14A~ll + K; K,$ =

A4A,,LZ; l]” = MBmz;  Jo = ‘rd.



3.2 Adaptive Control

‘1’hc nonadaptive attitude control law can bc writt,ml in vcctorizcd form as,

up = El”r

where,

(3.16)

(1” =  [K;  K; 11° Jo] (3.17)

,,,
r = [X;, T;2 U:t d~’]~’ (3.18)

Suppose that the gain matrix 0° in the control (3.16) is not known, and is rcp]accd by an

estimate b to give the approximate control,

where,

&=[l?ll?2fij] (3.20)

III this case, the error dynamics in (3.15) become,

where,

@=@o_~ (3.22)

TIIC following partitions will bc useful,

w h e r e  c o m p a r i s o n  w i t h  ( 3 . 1 8 )  g i v e s ,  rl = ZP1; r2 = XP2; r3 = Um; r4 = d and @l =

K; – i]; 6)2 == I{; – i{2; a~~ = 1]0 – ~l; @4 = Jo – ~. The partition (3.23-3.24) also leads

to the identity,

@r x ~ @iri (3.25)
i=]
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A general result  for stable tuning  of the adaptive attitude controller (3.19) is given next.

Theorem: Consider the spacecraft dynamics (3.5) with disturbance model (3.2), rcfcrcnce

model (3.8) and tunab]c  attitude control law (3.19). l,ct  the parameters in the attitude

controller, bc tuned according to the adaptive law,

ij)i = +$ ’] ’el.;’; i==l,2,3,4 (3.26)

where S = [011], and Ai arc any matrices such that

&A~] = (BPZA,V])7’  >0 i =  1 ,2 ,3 ,4 (3.27)

(e.g., A~ = ~~.1,  Ai > O). I’hen,  the error c = X,,, –XP in (3.21 ) approaches zero asymptotically,

and the quantities XP, l?(t),  l}(t) and ~(i) remain bounded.

Proofi Consider the Lyapunov function  candidate,

(3.29)

= –cTQc + 2rT@TllfPc -t

(3.30)

(3.31)

(3.32)
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(3.33)

llcre, (3.30) follows from (3.29) by using (3.3), (3.10), (3,27) and properties of the trace;

equation (3.31 ) follows by identity (3.25); cqua.tion (3.32) follows by rearranging and using

properties of the trace; and (3.33) follows using the definition of S, Then considering (3.3),

and substituting adaptive law (3.26) into (3.33) yic]ds,

This implies that V and, conscqucntly,  the quantities c, 0, d, Xp, r are bounded, ‘1’aking an

additional derivative of V gives,

IIcncc, V is bounded which implies that i~ is uniformly continuous. Since,

/
“ Vdt = V(m) – V(0) < m (3.36)

o

it follows from IIarabalat’s  lemma [5] that V ~ O and hence c -+ O as desired. E

The adaptive law (3.26) indicates that the feedback gains in the att,itudc  control loop are

tuned using the relations:

l?l =  A l  SPCX:I

~<2 =  AzSPcx~2
(3.37)

~1 =  AJ’Peu~

~ =  A4SPed7’

‘1’he control system developed in this section is represented by the block diagram of Figure 2.

3.3 Discussion

The model reference adaptive controller prcscntcd  in the preceding section is motivated by

an approach for robotic manipulators put forth by 1,im and Es]ami [6], and has intersection



with other  standard full-state S1’11-type adaptive designs found, for example, in l,anclau  [7],

Astrom  and Wittcnmark  [8], as well as mom rcccnt works of Slotinc and l,i [9], IIayard

and Wcn [1 O], and Wcn and Krcutz  [1 1]. llowcvcr, the basic approach of l,im and Eslami

has been modified for application to attitude control, including (with the help of l,cmrna

A2) the addition of adaptive filters to reject external disturbance iorques  acting on the

orbiting spacecraft. This approach to adaptive disturbance rejection is similar in spirit  to

standard methods used in the adaptive filtering literature for noise canceling (cf., Widrow and

Stearns [12]). IIowcwcr, adaptive filtering methods arc intended for fccdforward (open-loop)

operation, where there is no stability issue. ]n contrast, the adaptation of the disturbance

filters in the preseni  study is specifically designed to work in concert with the adaptive

feedback loop to reject disturbances while ensuring stability of the overall closed-loop systcm.

4 Application to Space Station

‘1’hc result of Section 3 is demonstrated via simulation using the dynamic model of the SSF.

‘1’}]c ‘~~hasc  I’ configuration []] shown in Figure 2 consists of the fully  assembled space station

and a massive mobile payload. Payload motion over the seven bay distance cflects large

moment of incriia changes and center of mass relocation, thus, becoming a major contributor

to parameter uncertainty and the cause of instability to conventional control]crs.  In this

particular SSI~ configuration, lW < ]11 < IM so that the open loop attitude dynamics are

inherently unstable. Under these operational conditions, adaptive attitude stabilization and

control bccomc  highly desirable.

TIIC equations of motion discussed in Section 2 hold in this case with some modification to

reflect the two-body dynamics occurring with the introduction of the payload. ‘J’hc modified

equations are briefly discussed in the following.

12



4.1 Space Station/Mobile Payload Dynamics

l,ei  the 2? rcfcrcnce  frame be fixccl  on the main body with origil] ~L~ at its ccntcr  of mass (CM).

~’hcn  at any instant t, the position of the moving payload CM relative to OB, is spccificd  by

the vector s(i) = [S1 (i) S2(i) s3(i)]7’. Conscqucnltly  the effective moment of inertia bccorncs

ti]mc dcpcndcnt  and is given by

l(i) = ~ – /Ii(i)&(i) (4.1)

whmc ~ = 1$ + lP. Here, IS and 1P are the inertia tensors of the space station and payload, rc-

spcctivc]y. 1~’urthermorc,  with m, and nIP masses of the. nlail~  body ant] payload, rcspcctivc]y,

~ is defined by
ms mlj/j= —.– (4.2)

m~ 4 mp

‘1’hc angular momentum for the two-body system is

The equation of motion is then obtained by substituting (4,3) into (2.8)

when-c 1 is given in (4.1) and ~ is defined as,

Thus, the attitude of the space station is complctc]y  characterized by (4.4) and (2.3).

4.2 Simulation Results

(4.3)

(4.4)

(4.5)

~’hc adaptive attitude control law (3.26) with the gains implemented according to (3.37) is

used to control the of the SSF with its dynamics discussed in the prcccding  section. ~’he

parameter values used in the simulation are summarized in the following table:
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‘l’able 1: SSF/Pa
Parameter

?V!asS (kg)
lnertias (kg-m2)

load Simulation Parameters
Space Station l’ayload

136080 13608

—-T---l
3.7096c+07
7.9 G81c+06
4.3212c+07

-2.8774c+05
-101805C+05
1 .7707C+05

1.4313C+05
1.9182c+05
1.43130--05

0.0
0.0
0.0

me parameter vectors g~ in the aerodynamic c]isturbancc (2.16) have the values given in

g’able 2,

‘1’ablc2: Aerodynamic. Paranletcrs(N-nl)
90 91 92

1,3558e+O0 1 .3558C+O0 6.7791C-01
5.4233e+O0 2.7116c+O0

-1

6.7791e-01
1 .3558C+O0 1 .3558C+O0 6.7791e-01

‘l’he orbital rate for the assumed circular orbit  is constant, W. = 0.0011 rad/s. The simulation

results shown here represent two possible operational scenarios.

Case 1: The payload does not maneuver, and remains near ~hc CM of the main body. The

commanded attitude is OC = [0 — 13,5 0]7 where the three angles are in degrees. The roll,

pitch and yaw responses arc shown in Figures 3-5. The broken lines indicate the trajectories

gcncratcd  by the reference model, Note that the bandwidth of the reference model essentially

bccorncs the effective bandwidth of the nonlinear closed-loop attitude control system. Since

the attitude control problem considers only the rigid body dynamics of the space station,

refcrcncc  bandwidth for all three axes is set at 0.00234 rad/s, i.e., approximate] y onc decade

below the frequency of the first flexible mode. This low bandwidth assures that there is no

interaction between the flexible and attitude dynamics of the spacecraft. l’igure 6 shows

the angular momentum about the pitch axis. Since the pitch motion converges fast to the

commanded ‘l’IIA, h reaches a non zero average value with the abscncc of a momentum

management loop. When this loop is closed, the steady state momentum will oscillate about

14



zero. l’he pitch control torque appcxws  in l“igurc 7.

Case H: q’hc 13,608 kg (30,000 lb) payload travels alol]g the y-axis to a distance of 35

meters, approximately, the length of seven space station bays. ‘1’hc payload motion follows tl]c

position profi]c  of l“igurc  8, ])espit,c the large mass relocation, resulting in moment of inertia

changes of, approximately, 30$Z0 (I~igure  9), the adaptive controller maintains stable attitude

control and drives the spacecraft to the commanded orientation. Time response of the three

attitude ang]cs  is shown in Figures 10-12. Rcprcscntativc  gain adaptation trajectories are

shown in l~igurcs  13-16. It is noted that, in all cases, the torque demand and angular

molncntum  accumulation arc WCII below the lmselinc  CMG requirement for SSf of J 50 lb-ft

and 20,000 lb-ft-s,  respectively.

!.5 Summary and Conclusions

An approach to attitude control was introduced based on a direct model refercncc adaptive

control law. Since the physical parameters appear cxplicit]y,  the control law can bc used

either for gain scheduling or for adaptive control, It was shown that  the model rcfcrencc

control]cr  can bc tuned  using an adaptation law derived from ],yapunov’s direct method.

This led LO a globally stable adaptive controller for the attitude control problcm.  I1nportant

features of the approach include stability with respect to arbitrary inertia] configurations,

and adaptive disturbance rejection filters which tune out periodic torques with frcqucncics

at multiples of the orbital rate.

Simulation results show cxccllcnt stability and robustness performance when the spacecraft,

in this case the space station, is subjcctcd  to significant mass property chagcs.  in Case 11 of

Section 4.2, the adaptive contro]lcr  maintained stable performance under maneuvering of a

massive (30,000 lb) payload from the CM of the main body to a distance of 7 bays (35 m).

A prob]cm closely related to attitude  control, is momentum management. Here, onc is con-

15



cernml with the amount  of momentum accumulated so that the actuators (C MG)S, reaction

wheels, ctc, ) do not saturate. Momentum in the present adaptive schcmc can bc managec] by

commanding an indirectly computed estimate of the ‘1’J~A, A direct  adaptive approach to the

momentum management problem is prcscnt]y  under study  which will provide an ouicr  loop

for commanding the reference model input. Other issues such as robustness of the adaptive

design to flexible body dynamics, nonidcalitics,  etc. , remain to bc investigated.
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Appendix

~’hc following arc presented in support of the argu]ncnts  leading to the I,yapunov  equation

(3.3) and its utilization in the stability proof of Section 3.2,

Theorem Al: If A E 7?nxn has distinct cigcnvalucs, then it is similar to a diagona]  matrix.

Proof: Sce [13] ■

Lemma Al: J,et Aq c 77.2X2 bc in the companion form

(A.])

with distinct cigenva]ues  {Al, A2}. ‘1’hcn tllc similarity transformation

A = R-l AR (A.2)

with }t the nonsingu]ar  Vandermondc matrix,

(A.3)
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diagona]izes A so that A = CIiag{Al,  ~z}.

Proofi I“ollows  by substitution of (A.]) and (A.3) into (A.2). 9

Lemma A2: l,ci A E 7?~x~  bc a genera] matrix with distinct cigcnva]ues  all on the jw axis,

Then there cxist,s a 1) = 1)1 >0, 1) ~ $f?,nx” SUCII that

]’A + A7’]’ == –Q s O (AA)

Proofi Since all cigenvalucs lie on the jw axis,

{

O, {+jwi};  if n odd
‘(A) = {+jwi};

i=],z,...,fi
if n cwcn

(A.5)

where

{

~
2 if n even

~1 = It-1 if n odd
(A.6)— .

2

Taking the case of n odd to bc the most genera], assume that AC is in the block 2 x 2

companion form
- o o o . ” . o o -

0 0 1 ... 0 0
O–w;o. ..o(l

A. = . . . . . . . (A.7). . .. . . .::
0 0 0 . . . 0 1
Ooo... –w:o

and let

P, =

It is easy then to verify that

100...00
0 1 0 ““” o 0
00 W;2. ..OCI 1.,, ,..,. “., .
. . . . . . I
000...10
000 . . . () l.# J

(A.8)

(A,9)

17



where I)C > 0. An identical argument can bc made if n is even by eliminating the first row

and column from each of A. and 1~. ‘1’o further gcncralim  this result let A bc any matrix

with distinct eigcnva]ues  A(A)  as in (A ,5) and n odd. According to ‘1’hcorcm A 1 there exists

a nonsingu]ar  matrix 7’, such that

Y’-1A7’ = A (AJO) ‘

IJurthcrmorc,  by  ]Jemma A 1 a block 2 x 2 Vandcrmondc matrix 1{ can bc constructed as

1: I
1 0 0 .,. 0 0
0 J 1 4.. 0 0
0 j(.dl –ju~ “o. o 0

R= . ; . . . . .
. . . :
0 0 0 ““c 1 ;
0 0 0 “ “ . jwn –jufi

so that

R-lA,]{ = A

Equating the left-hand side of (A.10) and (A.12) and solving for A yields

A = L-lA,],

where  1, = R7’-1. q’hcn from (A.9) and (A.13) it follows that

PCAC + A:’PC = O

T T(], -1 )Tp’p]. =  o* L7’PcLIJ ‘lACL  +- 1, AC

a PA + AT’IJ =  O

(A.]])

(A,12)

(A.13)

18



References

[1] Wit, 1]., K.W. Dyun, and VW. Warren, ‘New Approach to Attitu(lc/hflollle~~tulll  Control
for the Space Station,’ J. of Guidctncc,  Conlrola ?~dl~y?la?~tics,vol. 12, No.5, pp. 714-
722, 1989.

[2] Vadali,  S.,R.,  and 11.-S. Oh, “Space Station Attitude Control and Momentum h4anage-
ment:  A Nonlinear l,ook, J. of Guidance, Coniro/ and ljynamics,  vol. 15, No. 3, pp.
577-586, h4ay-June 1992.

[3] lllgcrsma,  M.IL,, G. Stein, h4.lL Jackson, and J, Yeic]]ncr, “Robust Control]cr  for Space
Station Momentum Management,” lEI;E Control Sysimzs Magazine, vol. 12, No. 5, pp.
14-22, October, 1992.

[4] l)ishop,  R,ll., S.J. Paavntcr,  and J.W.  Sunkcl, ‘(Adaptive Control of Space Station w;th.
Control Moment Gyros,” IEL’.E Conirol Systkms  Maga.zinc,  vol. 12, No. 5, pp. 23-28,
October, 1992.

[5] l]opov, V. M., IIypcrstabiliiy  of Control Systems, Spr;ngcr-Verlag,  New York, 1973.

[6] l,im,  K. Y., and M. Eslami, ‘Adaptive Controller l)esigns for Robot Manipulator Systelns
Using ],yapunov  IXrect Method,’ IEEE  Tbans. on Automatic C’onirol, AC30(12),  pp.
1229-1233, 1985.

[7] l,andau,  Y.])., A daptivc  Conirol: The Model Rcjercncc Approach, h4arcel  l)ekkcr,  Ncw
York, 1979,

[8] Astrom, K.J and El. Wittcnmark,  Adaptive Conirol.,  Addison Wesley, New York, 1989.

[9] S]otine, J.J. and W. l,i, “On the Adapt;vc  Control of Robot Manipulators,” l’roc. ASMII
Winter Annual Meeting, Anaheim, California, 1986.

[10] IIayard,  1>.S. a n d  J.7’. Wen, “A Ncw Class of Control l,aws for Robotjc  Manipulators
l)art II: Adaptive case,” international Journal of Control, Vol. 47, No. 5, pp. 1387-1406,
1988.

[11] Wcn, J.T, and K. Kreutz-l)e]gado, “l’he Attitude Control l’roble~m,”  IEEE  !l’rans. Auto.
Contr.,  Vol. 36, No. 10, October 1991.

[12] Widrow, B. and S.1). Stearns, Ada@ivc  Signal l%occssing, l’rcnticc-]  Ian, Eng]ewood
Cliffs, N. J., 1985.

[13] Ncring,  E. D., Linear Algebra and Matrix  Theory, Wiley, New York, 1963

19



Figure  1: ‘I)hase 1’ Configuratioll of the SS1’

20



I .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,
RFHRmm  MODE’1  ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..! I
~ mOnmAMIC

DL$TLWIANCE

! 4ZI-4,. . . . . . . . . . . . . . . . . . . . . . . . . . .  ...!
- - - - - - - - - -  - - - - - - - - -  - - - - - - - - - -  - - - - - - - - - -  - - - - - - - - - -  .  . . . . . .

$--1 ● ym
L

+
x

r=[oTl

—

c

?

lSNUNANCk
DYNAMICS
WfiAATOR—

d

-+; dT]
—
. .

—
—

—
1-

J

. . . . . . . . . .

,—

AMPT[a  CON~OLIFb!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2: Adaptive Attitude Control Systcm

21



o.

0.0

-o.

-o. l!

o

-2

-4

-6

-8

-lo

-12

-14

---tl-

,_. ,- , .-—--.,., –-–.  - r  – . - , . . . . .  .T

\
---7.A.KY. -- -.----– —--------  .----—.

ORBI”lS

Figure  3: Case 1- Roll Angle T’irnc Response

-— —- ——- . . .—

Figure 4: Case 1- Pitch  Angle  Tirnc lksponsc

22



O,oc

0.04

s 0.02

;

go

&l

p -0.02

;
* -0.04

-0.06

.,

!. . ---- . . . . . .
v

., —----...7
-T ., – - , -  , . ,  . ,-

/1

/

. . . L \ \/v. . . . . . . . . . . . . . . X. . . . . . .l.xc+.-_,.-..l_ –..

[- 0 . 0 80 –- ––..5–-– .-. I
. . 1

... –..., . . . . . . . . ..- ,__. . ,.- _J __ ,_
1.S 2 2,5 s 3.5 4 4.5

OIWI”IS

l’igure 5: Case 1- Yaw Angle ~’ime Response

o L ..__–,.._ .___., _
o 0.5 1

,__ ___  L.. —–.—A— -. .-.—
1 .s 2 2.5 3

Ormns

Vigure  6: Case 1- Pitch  Angular

.,.
3.5 ;

MO]ncnturn

.,. .-– –—.
4.5 5

23



4

2

0

-2

$? -4
&
a
> -6

-8

- lo

-12

-14

G-
C4

B.J

40

35

30

25

20

15

10

5

0

\M/M[
–—, -–——1
0.5 1

,-.. .—––  . . . -.——. , —–  1 .–-—  L_.–._–  J _  _ -L–——  —--

5. . 2 2.5 3 3.5 4 4.5 5

ORBI’1’S

l“igurc  7: Case 1- l’itch Control ‘1’orquc

~..
–T— --7  . ,

~.-  . . . .

/

T–

.-

,. —,.- ~.–- .,

/-–-.–. —1. –

0.1
. ..–-,  —. —-... –,.

“0:2  0.3 0.4

Figure  8: Case II -

. . . . . .
0.5

ORII1”IS

Payload

-. , 1 . . . . ..- .—(  .—— – L –—.-—
U.tl U.1

Positiol~

---- 0.8 0.9 1

l’rofilc

24



.-.Xlu’
5 . — . .  ~

4.8

4 . 6

4 . 4 -

4 . 2 -

4-

3,8-

3.6-

3 , 4 -

3 . 2 -

s-
o

(3.8 ---

0.6

0.4

I

.L

0.

3’,,$ 133

‘,
. . . . . . . . . . . . . . . -

. . . ..J _J _
0.2 0.3

Figure 9: Case 11-

,— -- .—, ..—_. _T

1

L.. .– L  -... —., - . . .. —_...  L _-–.  _,.  .._..,  _  ._  _..

0.4 0.5 0.6 07 08 0 g ~

ORB1”IS

Changcin  Moment of]ncrtia

.r—– . . . . . . . . . . _._, . . . . . . –_ ,

0.2

[!/

%P%e~-+.-----=-----
0 ---------- -... . . . . . . . . . . --------

-0.2

-o.4;—–-;i- —------114- ;- 2,5..- .--.;–.- -------- 1 . . ...-.1.- -.
. . . . . . 3.5 4 4.5 5

ORBITS

FigurelO:  Cascll-  llollA1,Elcl’imel  /,cs~,onse–,. -. .-s

25



,.

(

-:

-4

-(

-$

- l o

-12

-14

-16

0.’

0.(

o.!

().4

o?. .

0.2

0.1

0

-0.1

-0.2

-0.3

..—.r--..— —_,—..—––7 –. , —T—. .—, .– ,

\

\

‘! L. . . . . . . . . . . . . . . .
‘. .,- --=-==+-  -==--- –--== =—------  –-

,.. .— . .. —r. —-._.

Owlrrs

l“igure  11: Case II - Pitch Angle I’imc Response

\

–7 r—–---—––,  - ., .. –-_ , .,.

_<.\<... _= _____ __ _

0RBIT5

Figure 12: asc 11- Yaw Angle ‘1’imc  ltcsponsc

26



2.2

2.]5

2.1

2.05

21

-r– —..—, ..—. -. , _ –- ,. ––. .,. .— ___ ., . - _ _ ,  — - - - -  ,  — . , . .

1 –.— J_,  -—._  ,.–  . . .1.951
0 0.5 1 1.5

-44 —-—.7  --–. . - ___ .__,.r

K
---=----

-46

-48

.SOL..—...J  .-–_.. –- -_. J
0 0.5 1 1.5

-(–_,.  .–.  . ,-. —

2 2.5 3 3:S “- “4-” ‘-- 4:5 5

o~nrrs

., . .7 —.._.. -–,..–. –. —r ——. ,–—-–r .--— 1
._ ————— -—-–.  . —----–——–— -. .––-––- ——..

,

-1

–—.. . . . . . —-  L.—––..  , —___  > . . . . . . . . . ._  _,_. -J
2 2.5 3 3.5 4 4.5 5

c)R1~rI’s

Figure  13: Case 11- Adaptation of 1{] (2,1) and A’, (2,2)

o

~p

“’’’’v’-  -’~-’--— —______— _.-— — ___

~t-+
u -0.1
E

-0.2

-0.3 ---- <F
o .

-0.85 ➤ ---- -,--
I

A.——.—l .- .— . ...1 .— .—— . . . . .-  ..— 1 –....– ._.L.  ___. _._ —.....,  —— __
1 1.5 2 2.s 3 3.5 4 4.5 5

oRRrrs

—., _.-– _.. —, ._. _., ____ .- T_– —.-_=___  ____~.. _ , -.

-0.9

q
c -0.95
G

-1

k.] .050 —..-~. ——..; . ..–y$.. .-J.- .-1 .–- –.. ., _—. J ______ . . _____ . . . . . __
. . . . 2 2.5 3 3.5 4 4.5 5

oswrrs

___ —— ______  . . . .

Figure 14: Case 11- Adaptation of 1{1 (2,3) and 1{1 (3,2)

27



.

1

~
c o
~

-1

b

\ . . _ / ” - -  -  - - _ . –  - - - - - - - - - - - - - - - - - - - - - -

-2 L. . . . .  .. L...... -.A _. . . . ..-. _.

o 0.5 1 1 .s

Figure 15: Case 11-

., ..– . . . . _. –.-.. , .’  —.. —  –.-,  -. d..

2 2.5 3 3.5 4 4.5 5
ORIHTS

AdaptatioIl  of Jd(l, 1) and ~~(1,  3)

-2 L..—.-_~–_ _._..,._— . ——._– , __.. __–__, _______ L .– . . –. ________ I
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 s

4

2

-4

-6 —... -—.  –——J...– . . ..—. —L ..- ., _—__, . . . . . . . . .

0.5 1
_—L .  —_ .

1.5 2 2,5 3 3.5 4 4.5 ;

omrrs

Figure 16: Case 11- Adaptation of J~(2, 1 ) and J~(2, 3)

28


